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Abstract-An analytical solution is obtained for laminar forced convection in circular and flat ducts with the 
presence of axial duct wall conduction and external convection at the outer surface of the duct wall. The 
eigenvalues for the problem are determined using the solution for the constant temperature boundary 
condition. The heat transfer results depend on four nondimensional numbers. The wall and fluid temperatures 
depend strongly on the wall conductance parameter while the heat flux enhancement due to wall conduction is 

large at short distances from the duct inlet. 

INTRODUCTION 

LAMINAR forced convection in round pipes and flat 
ducts is an important heat transfer situation 
encountered in many engineering applications. This 
problem has been solved for various boundary 
conditions including the constant wall temperature, the 
constant wall heat flux and the external convective heat 
transfer. The literature on the solution for these 
boundary conditions is reviewed by Shah and London 
[l]. As Shah [Z] points out, the laminar convection 
problem with simultaneous duct wall axial conduction 
has received less attention. The effect of wall axial 
conduction on laminar flow heat transfer was studied 
by Davis and Gill [3] and Mori et al. [4, S]. Mori et al. 
considered round and flat ducts with the constant wall 
temperature and constant wall flux boundary 
conditions. Faghri and Sparrow [6] have extended this 
study to include axial conduction in the fluid and the 
duct wall. 

The present paper addresses an extension of this 
problem to include external convection from the 
conducting duct wall. This situation has applications in 
the design of natural convection radiators, cross-flow 
heat exchangers and some solar energy collectors. In 
these situations, the fluid in the duct is in laminar flow 
with a heat loss or gain by external convection, at the 
outer surface ofthe wall where the external heat transfer 
coefficient is uniform. An analytical method is 
developed for the solution of this conjugate heat 
transfer problem using the Duhamel’s superposition 
technique. A simple procedure is obtained for the 
determination of the eigenvalues of the solution. 

ANALYSIS 

In this section an analytical model is developed for 
the conjugate heat transfer problem. The ducts 
considered in the study are shown in Figs. l(a) and (b). 
The detailed analysis is given for the round pipe and the 

FIG. 1. Schematic diagrams of ducts. 

corresponding results for the flat duct are easily 
deduced. The conjugate heat transfer problem 
consisting of the flowing fluid and the tube wall is 
governed by the respective energy equations. In the 
present study we are concerned with a thin-walled tube 
with convective heat transfer at the outer surface. The 
heat transfer coefficient and the temperature of the 
external fluid is assumed to be uniform. In order to 
make the analysis general we also introduce internal 
heat generation Q in the wall. Since the wall is assumed 
thin, this could also account for an incident external 
radient energy source. Applying the energy equation to 
the tube wall element, the local convective heat flux 
from the inner surface of the tube to the flowing fluid is 
obtained as 

191 
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NOMENCLATURE 

B external Biot number, h,r,/k T,(z) wall temperature distribution 
C, specific heat capacity of the fluid T, external fluid temperature 
Ci coefficient in the temperature distribution T, fluid temperature at duct inlet 
C, coefficient in the constant temperature To,(x) bulk mean fluid temperature 

solution r0 effective temperature above inlet fluid, 
d width of flat duct (T,- T,) 
G, coefficient in the constant temperature r, wall temperature above inlet fluid, 

solution K-T,) 
h, external heat transfer coefficient 
H(s) function in the solution 
k thermal conductivity of the internal fluid 
k, thermal conductivity of the duct wall 
L length of the duct 
L+ dimensionless length of the duct, L/r * Pe 
k mass flow rate of fluid 
Nu Nusselt number for internal flow, 

(h x 2r,/k) 
Pe P&let number of fluid, u,(2rJ/cl 
Q(x) wall energy source 

40 wall heat flux without wall axial 
conduction 

t,(O) wall temperature at z = 0 

r(r+, z) dimensionless fluid temperature 
t,, bulk fluid temperature above inlet fluid, 

(Tfb- T,) 
t, Laplace transform oft, 

t, Laplace transform oft, 
u, mean fluid axial speed 
u(r) fluid velocity distribution 
X axial coordinate 
x+ dimensionless axial coordinate, (x/rJ 
Z dimensionless axial coordinate, x/(riPe). 

qQ wall heat flux with wall conduction 

4 heat flux at inner tube wall 

4+ dimensionless heat flux, qri/k 
outer radius of tube ra 

ri inner radius of tube 
r radial coordinate 
r+ dimensionless radial coordinate, r/ri 
R, coefficient in solution 
S Laplace transform variable 
To effective external temperature 

Greek symbols 
ai roots of the equation, H(s) = 0 
clp positive root of equation, H(s) = 0 
- thermal diffusivity of fluid 

; wall conductance parameter 
@ dimensionless parameter, b/Pe’ 
e function in solution 
p dimensionless parameter, D/B 
1, eigenvalues of solution 

P density of fluid. 

Eauation (1) can be written in terms of an effective where 
1 \ , 

external fluid temperature T,(x), in the form 
u(r) = 2u, l- c 

2 

[ 01 . 

ri 

The boundary condition at r = 0 is 

where 

T (x) = 9 + T 0 h, ” 

The boundary conditions for the wall are 

dT 
-Z = 0, for x ~0 and x > L. 
dx 

In the absence of a generation source Q, the effective 
temperature is equal to the external fluid temperature 
T,. The energy equation for the fluid is written for 
hydrodynamically fully developed laminar flow in the 
absence of fluid axial conduction. For a round pipe this 
takes the form 

(2) 

; (0, x) = 0, x > 0. (W 

The boundary condition at x = 0 is 

T(r, 0) = T,. (2b) 

Equations (l*) and (2) are now expressed in 
dimensionless form. For this purpose we use the terms 
similar to those adopted by Faghri and Sparrow [6]. 

The energy equation for the wall takes the 
nondimensional form 

q+ = ff =(t,-t&?+ s cf, 0 ( > (3) 

where the external Biot number, B = (h,r,/k) and the 
parameter @ is given by 
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and 

B @Z-r?) k 
=I- - 0 2rf k 

is the wall conductance parameter. 
The Biot number is usually defined as (h,r,/k,) for 

most conduction-convection situations. In the present 
instance, however, the thermal resistance of the wall in 
the radial direction is assumed to be small. The 
nondimensional number, B, is more a measure of the 
ratio of the internal fluid resistance to the external 
convective resistance. This nondimensional number 
has been used previously in the solution of the Graetz 
problem with boundary conditions of the third kind [S, 
91. The wall conductance parameter, /I, is a measure of 
the ratio of the axial wall conductance to the 
conductance of the fluid. The nondimensional number, 
@, is directly proportionally to /?, for a constant value of 
the P&let number. 

The boundary conditions are : 

dtw dz=O, at z<O and z2Lc 

Following the work of some of the previous 
investigators on related conjugate problems, the 
nondimensional axiallcoordinate could be taken as, x+ 
= x/ri instead of the more common nondimensional 
coordinate, z = x/(r,Pe). This would make the 
comparison of results with other work easy. However, 
the presentation of results is considerably compressed 
by using the parameter z. Hence we develop the analysis 
using the parameter a as the axial distance variable. 

The nondimensional form of the set of equations [2], 
with constant wall temperature boundary condition 
T(r,, x) = T,, has been solved, and the solution is given 
by Kays [7] in the nondimensional form 

@(r+,z) = 2 C,R,(r+)exp(-1;~). (2*) 
ll=0 

The eigenvalues 1, and the coefficients G, for this 
system are tabulated in ref. [7]. 

The foregoing expression (2*) is now used to obtain 
the solution for the set of equations (2) and (3), using the 
Duhamel superposition technique. This gives the 
equation 

(4) 

where t,(z) = t(l, z). 
In order to solve the integro-differential equation (4), 

the axial distance variable z is Laplace transformed and 
the convolution theorem is applied to the first term on 
the RHS. The wall end boundary conditions are applied 
to second term on LHS in its transformation. 

This leads to the equation 

-B@O-TW] +@st,(O)-wt, = e,(l, O)& +TJl (5) 

where 

fl=“tos 
” 

is the Laplace transform of (d@/dz) and 

@(l, 0) = -2 T G,, from ref. [7]. 
n=O 

On substitution equation (5) simplifies to the form 

where p = m/B. 
In principle, equation (6) can be used to determine the 

wall temperature distribution and all the other heat 
transfer parameters, for any form of the given 
equivalent external temperature distribution t,(z). The 
computational problem reduces to one of determining 
the zeros of the expression 

H(s) = (1 -d+ ; “ZO & 0 (7) 
” 

and then obtaining the inverse transform of (6). 
An accurate iterative method was used to obtain the 

zeros of H(s) in the present work. This will be described 
later in the paper. In general, H(s) = 0, has only one 
positive root and all the other roots are negative. If the 
roots of H(s) = 0 are denoted by xi, then the wall 
temperature distribution is obtained by inverting 
expression (6), and for a uniform external temperature 
distribution t,, this has the form 

rw(r) = &+$i Ci [~-PLP~‘%]ea’z (8) 

where the coefficient Ci is given by 

ci= it& [ 1 

-1 
-2pc$ . (9) 

no,” 

In the temperature distribution given by (8), the wall 
temperature at z = 0, t,,,(O) is as yet unknown. This is to 
be determined using the wall end boundary conditions. 
Here two situations can be distinguished. 

For the first case of a very long duct, the contribution 
from the positive root up must be zero for otherwise the 
termeap”+coasz+co. 

Therefore, from (8) we obtain the condition 

p,(O) = 4, for a ‘long’ duct. 
UP 

For the second case, consider a duct of nondimensional 
length L+. The heat flow along the duct wall at z = L+ 
is zero from the boundary condition assumed. 
Therefore, 

dt w 
dz =cL+ = 

0. 
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Using equation (8) we have, 

t, f Ci exp (cCiL+) 
&JO) = J=l , for a ‘short’ duct. 

igl cicrZ ev taiL+) 

The wall temperature distribution is completely known 
now and it can be used to obtain closed form 
expressions for all the other important heat transfer 
parameters like the bulk mean fluid temperature 
distribution, the wall heat flux distribution and the 
local Nusselt number variation. These are summarised 
in the following section. 

Bulk meanfluid temperature 
Applying the energy equation to a control volume 

from x = 0 to x we obtain the following 

s 

X 
2nr, q(x’) dx’ + tiC,T, = X,7& 

0 

Substitution of the nondimensional variables gives the 
bulk mean fluid temperature as 

& 
s 

(11) 

0 

Local heat$ux and Nusselt number 
Applying the energy equation to a wall element at x 

we have 

2zriq = tic, 2. 

This gives the nondimensional form for the wall heat 
flux 

(13) 

The local Nusselt number is given by 

Nu=h,2r,=~ 4 
k kT,-T,,’ [ 1 (14) 

The nondimensional form is 

(15) 

Direct substitution of the expressions given by 
equations (8) and (9) for the wall temperature, in the 
equations (1 l), (13) and (15) gives the various heat 
transfer parameters. 

Computational method 
The computational problem associated with the 

present analytical method reduces essentially to one of 
finding therootsoftheequation,H(s) = O,whereH(s)is 
given by equation (7). The form of the functions 
involved in H(s), lends itself to an iterative solution 
which is both fast and accurate. Also there is no 
difficulty in obtaining the very large roots. Figure 2 
shows a sketch of the various functions involved in H(s). 
It is seen that (ps’- 1) is parabolic with zero values at 
+ l/,/p and a turning point at (0, - 1). The functional 
form (2s/B)z,” G,/(s + A,$ has branches lying between 
a series of asymptotes at the various ‘1,’ values. For 
large positive values of s, the curve reaches the value 
(Z/B)c.“= o G,. Th e intersection of the two functions 
corresponds to the roots of H(s) = 0. It is clear that 
there is one positive root in range, l/ Jp < cl,, < cc. The 
negative roots lie between the various 1, values and the 
larger roots get progressively closer to the correspond- 
ing 1, values. With a reasonable initial value for each 
root, an iterative procedure converges rapidly on the 
exact root. This can be achieved with any desired degree 
of accuracy. In the present computation over 50 roots 
were used to obtain consistent converged results for the 
Nusselt number. 

The predictions of the present method in the absence 
of wall conduction, i.e. with p = 0, were compared with 
12 eigenvalues and coefficients given recently by Ozisik 
and Sadeghipour [9], over a range of Biot numbers 
from 0.10 to 100, for a round tube. The agreement was 
very good with the maximum deviation less than 
0.02%. Next the present results were compared with 
those of Faghri and Sparrow [8], for local Nusselt 
number variation in the absence of wall axial con- 

FIG. 2. Roots of H(s) = 0. 
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duction. Over the range of z, from 0.0004 to 1.0, and 
at Biot numbers of 0.8, 2.1 and 11.2, the differences 
between the results if any are too small to be resolved 
using the graphs A’, B’ and E’ in Fig. 1 of ref. [8]. The 
heat transfer results for the solution of the conjugate 
problem using the foregoing analysis, are presented 
in the next section. 

RESULTS AND DISCUSSION 

It is seen that in view of the many parameters 
involved in the analysis, a completely general data 
presentation is difficult. Each heat transfer parameter 
like the bulk mean fluid temperature and the local 
Nusselt number depends on three independent 
dimensionless parameters z, B and (0, for the case of a 
‘long’ duct and the nondimensional length L+ becomes 
an additional parameter for the case ofa short duct. The 
P&let number, Pe, does not occur as an independent 
parameter. We take advantage of this fact to compress 
the presentation of results. Since the P&let number 
occurs in @ and z, it can be treated as a scaling factor in 
the various curves. 

The eigenvalues cli and coefficients Ci for the round 
tube and the flat duct are given in Tables 1 and 2, at 
different values ofthe conductance parameter 4i and the 
Biot number B. The sign is consistent with the equation 
for the wall temperature distribution. The main heat 
transfer results are discussed in the following section 
considering first the case of a ‘long’ duct. 

The variation ofthe tube wall temperature with axial 
distance is shown in Figs. 3 and 4. It is seen that the wall 
temperature is influenced both by the wall conductance 
parameter cf, and the Biot number B. When B is small, 
i.e. when the external thermal resistance is larger, the 
wall temperature distribution depends strongly on a. 
The distribution gets progressively ‘flatter’ as @ is 
increased. This is to be expected due to the increased 
conduction heat flow downstream along the tube wall. 
For low values of a, the increase in wall temperature is 

more gradual due to the reduced ‘fin’ effect. When B is 
increased to a large value, i.e. when the external thermal 
resistance is very low, the influence of the variation of Q, 
on the wall temperature distribution is much less and 
the distribution is much flatter as seen from Fig. 4. 
Figure 3 shows that for B = 1.0, the temperature 
distributions intersect at distance beyond about z = 
0.3. The wall temperature for larger @ values now fall 
below that for smaller @. This is due to the balance 
which occurs between heat flow along pipe wall, the 
heat flow by external convection and the heat flow into 
the fluid. The magnitude of these quantities at any 
section is determined by the changes which occur along 
the downstream section. 

A similar crossing occurs for the bulk mean fluid 
temperature distributions as evident from Figs. 5 and 6. 
However, the effect of the conduction parameter @, on 
the bulk mean temperature is less pronounced. At 
shorter distances, the ‘fin effect’ resulting from the heat 
flow along the tube wall helps to increase the fluid 
temperature more rapidly. However, as the wall 
temperature falls below the corresponding value for the 
low @ value, the bulk fluid temperature follows this 
decrease some distance upstream of wall temperature 
crossing point. The effect of the Biot number B on the 
bulk mean fluid temperature is significant as seen in Fig. 
5. At smaller values of B, the rise is very slow due to the 
poorer heat gain by external convection. 

The effect of the wall conductance on the inner 
convection heat flux is evident from Fig. 7 where heat 
flux ratio is plotted against axial distance. In the near 
region of the tube, the heat flux is increased by a factor of 
two to three for low Biot number of about 1.0 to 0.10. 
However, at larger Biot number, the high external 
convection reduces the enhancement of the heat flux 
resulting from the ‘fin’ effect along the tube wall. Thus 
the wall conduction effects are more important in 
situations where the external thermal resistances is the 
controlling factor. 

The effect of the wall conductance parameter on the 
local Nusselt number is less pronounced as seen in Fig. 
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FIG. 3. Axial variation of wall temperature. 
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FIG. 7. Axial variation of wall heat flux. 
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FIG. 8. Axial variation of local Nusselt number 
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FIG. 9. Effect of total duct length on wall temperature. 
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FIG. 10. Effect of total duct length on bulk mean fluid temperature. 

8. An increase in the conduction parameter @ reduces 
the local Nusselt number to different values along the 
tube. This again is due to the balance between, the heat 
flux, the wall temperature and the bulk mean fluid 
temperature, as’these together determine the magni- 
tude of the local Nusselt number. 

The effect of the nondimensional duct length on the 
wall temperature and the bulk mean fluid temperature 
are shown in Figs. 9 and 10. When the length L+ is more 
than about 0.2, the wall temperature follows closely the 
distribution for a ‘long’ duct. For shorter duct lengths, 
the wall temperature is significantly below that for the 
long duct. This is due to reduced heat flow from 
upstream due to the smaller length of the ‘fin’ available. 
The difference between the curves increases progress- 

ively as the duct length is reduced. When the 
conduction parameter is reduced to a small value 
(@ = 0.5 x 10d4), the difference between the wall 
temperature distribution for the long duct and a duct of 
length L+ = 1.0 x lo-’ is very small and this difference 
is mainly near the end of the short duct. Similar trends 
of behaviour is observed at different Biot numbers, the 
effects of axial conduction being more pronounced at 
lower values of B. 

The effect of the duct length on the bulk mean fluid 
temperature is less marked as seen in Fig. 10. The 
distribution for the shorter ducts follows the variation 
for the long duct closely. 

The heat transfer results for the flat, rectangular duct 
follow the same trends as the circular tube. The 

I I 

16' 16' 
z :zx 1.0 

dPe 

FIG. 11. Axial variation of local Nusselt number. 
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variation of local Nusselt number for this geometry is 
shown in Fig. 11, and the eigenvalues and coefficients 
for the problem are given in Table 2. 

CONCLUSION 

An analytical method based on the Laplace 
transform technique was obtained for the solution of 
conjugate heat transfer problem with axial wall 
conduction, external convection and internal laminar 
flow in round and flat ducts. The method is 
computationally simple and gives accurate results for 
the eigenvalues. It can be easily adopted for other flow 
situations. 

The heat transfer parameters depend on four 
nondimensional groups B, @, z and Lc. For small 
values of the Biot number, B, the wall temperature 
distribution and the bulk mean fluid temperature 
distribution, depend strongly on the conductance 
parameter, Cp. The heat flux enhancement due to wall 
conduction is large at short distances from the duct 
inlet. The wall temperature is strongly dependent on the 
total duct length but the bulk mean fluid temperature is 
less dependent on the length. The variation of Nusselt 
number with Q and B is significant. 
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CONVECTION LAMINAIRE FORCEE DANS DES CONDUITS CIRCULAIRES ET PLATS 
AVEC UNE CONDUCTION AXIALE EN PAR01 ET UNE CONVECTION EXTERNE 

Resume-Une solution analytique est obtenue pour la convection for&e laminaire dans des conduits 
circulaires et plats en presence de conduction axiale de paroi et de convection externe sur la surface externe de 
la paroi du conduit. Les valeurs propres du probleme sont determintes a partir dune solution pour la 
condition aux limites de temperature uniforme. Le transfert thermique depend de quatre nombres 
adimensionnels. Les temperatures de paroi et du fluide dependent fortement du parametre de conductance 
surfacique tandis que l’accroissement du flux de chaleur dii a la conduction de la paroi est important a des 

distances courtes de l’entrie du conduit. 

KONVEKTION BE1 ERZWUNGENER LAMINARER STRC)MUNG IN KREISFORMIGEN 
UND IN FLACHEN KANALEN MIT LANGSWARMELEITUNG IN DER WAND UND 

KONVEKTION AUF DER AUSSENSEITE 

Zusammenfassung-Es wurde eine analytische Losung fiir die Konvektion bei erzwungener laminarer 
Striimung in kreisfiirmigen und in flachen Kanalen bei Langswlrmeleitung in der Wand und Konvektion 
an der Augenseite der Wand hergeleitet. Die Eigenwerte des Problems wurden unter Verwendung der 
Losung fur die Randbedingung konstanter Temperatur bestimmt. Die Ergebnisse fiir den Warmedurchgang 
hlngen von vier dimensionslosen Kennzahlen ab. Die Wand- und die Fluidtemperaturen hangen stark 
vom Warmeleitfahigkeits-Parameter ab, wahrend die Erhiihung der Warmestromdichte infolge Llngs- 

Warmeleitung in der Wand bei geringen Abstlnden vom Kanaleintritt groB ist. 

nAMMHAPHAR BbIHYXAEHHAa KOHBEKHHR B KPYFJIbIX I4 IIJIOCKHX KAHAJIAX 
C OCEBOH I-EIIJIOl-IPOBO~HOCTbIO CTEHOK H BHEIIIHEH KOHBEKHHEH 

hUIOTaUIUI-~OJIyWHO aHaJIWTB’i’.?CKOe pW.ICHUC AJISI JaMNHapHOfi BbIH,‘mneHHOfi KOHBCKUWN B 

Kpy,-,IblX II IIJIOCKAX KaHa,IaX IIf,&, OCCBOfi TC~JIO~POBO~HOCTA CTCHKB KaHaJIa II BHCluHCii KOHBCKUUli Ha 

CC HapymHOii nOBe,,XHOCTA. CO6CTBCHHbIC 3HaWHWll 3ajV’IU Haii!JCHbI C IIOMOUIb‘O PClllCHIlfl Ani- rpa- 

HIlYHbIX YCJIOBHfi C UOCTORHHOfi TeMllCpaTypOk Tennoo6Men OII~AeJI~CTCK ‘ETbIpbMK 6e3pa3MCpHbrMH 

YUCJIaMU. TCMnepaTypbl CTCHKU H XWIKOCTH CWIbHO 3aBUCIIT OT TCIl~OIIpOBO~HOCTIi CTCHKH, B TO BPCMI 

KBK yBeJWI’ZHHe TCWIOBOrO “OTOKa A3-3a TCnJIOnpOBO~HOCTU CTCHKH 3aM‘ZTHO JIAUlb Ha He6OnbUIAX 

paCCTOKHU,TX OT BXOAa B KaHaJL 


