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Abstract— An analytical solution is obtained for laminar forced convection in circular and flat ducts with the

presence of axial duct wall conduction and external convection at the outer surface of the duct wall. The

eigenvalues for the problem are determined using the solution for the constant temperature boundary

condition. The heat transfer results depend on four nondimensional numbers. The wall and fluid temperatures

depend strongly on the wall conductance parameter while the heat flux enhancement due to wall conduction is
large at short distances from the duct inlet.

INTRODUCTION

LAMINAR forced convection in round pipes and flat
ducts is an important heat transfer situation
encountered in many engineering applications. This
problem has been solved for various boundary
conditionsincluding the constant wall temperature, the
constant wall heat flux and the external convective heat
transfer. The literature on the solution for these
boundary conditions is reviewed by Shah and London
[1]. As Shah [2] points out, the laminar convection
problem with simultaneous duct wall axial conduction
has received less attention. The effect of wall axial
conduction on laminar flow heat transfer was studied
by Davis and Gill [3] and Mori et al. [4, 5]. Mori et al.
considered round and flat ducts with the constant wall
temperature and constant wall flux boundary
conditions. Faghri and Sparrow [6] have extended this
study to include axial conduction in the fluid and the
duct wall.

The present paper addresses an extension of this
problem to include external convection from the
conducting duct wall. This situation has applications in
the design of natural convection radiators, cross-flow
heat exchangers and some solar energy collectors. In
these situations, the fluid in the duct is in laminar flow
with a heat loss or gain by external convection, at the
outer surface of the wall where the external heat transfer
coefficient is uniform. An analytical method is
developed for the solution of this conjugate heat
transfer problem using the Duhamel’s superposition
technique. A simple procedure is obtained for the
determination of the eigenvalues of the solution.

ANALYSIS

In this section an analytical model is developed for
the conjugate heat transfer problem. The ducts
considered in the study are shown in Figs. 1(a) and (b).
The detailed analysis is given for the round pipe and the
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F1G. 1. Schematic diagrams of ducts.

corresponding results for the flat duct are easily
deduced. The conjugate heat transfer problem
consisting of the flowing fluid and the tube wall is
governed by the respective energy equations. In the
present study we are concerned with a thin-walled tube
with convective heat transfer at the outer surface. The
heat transfer coefficient and the temperature of the
external fluid is assumed to be uniform. In order to
make the analysis general we also introduce internal
heat generation Q in the wall. Since the wall is assumed
thin, this could also account for an incident external
radient energy source. Applying the energy equation to
the tube wall element, the local convective heat flux
from the inner surface of the tube to the flowing fluid is
obtained as

ar= (L) -1

(=), (€T, (%
+ 7 ky, <—dx—2) +(;:> Qx). (1)
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NOMENCLATURE
B external Biot number, h,r /k T.(z) wall temperature distribution
C, specific heat capacity of the fluid T, external fluid temperature
C; coefficient in the temperature distribution T, fluid temperature at duct inlet
C, coefficient in the constant temperature Tip(x) bulk mean fluid temperature
solution t, effective temperature above inlet fluid,
d  width of flat duct (T,—-T)
G, coefficient in the constant temperature t, wall temperature above inlet fluid,
solution (T,—T)
h, external heat transfer coefficient t,(0) wall temperature at z =0

H(s) function in the solution
k  thermal conductivity of the internal fluid
k, thermal conductivity of the duct wall
L length of the duct
L* dimensionless length of the duct, L/r* Pe
m  mass flow rate of fluid
Nu Nusselt number for internal flow,
(h x 2r;/k)
Pe Péclet number of fluid, u_,(2r;)/a
Q(x) wall energy source
g, wall heat flux without wall axial
conduction
wall heat flux with wall conduction

t(r*,z) dimensionless fluid temperature

tr, bulk fluid temperature above inlet fluid,
(=T

t, Laplace transform of ¢,

t. Laplace transform of t,,

u, mean fluid axial speed

u(r) fluid velocity distribution

x  axial coordinate

x* dimensionless axial coordinate, (x/r,)

z  dimensionless axial coordinate, x/(r;Pe).

do Greek symbols
g heat flux at inner tube wall a; roots of the equation, H(s) = 0
g* dimensionless heat flux, gr;/k a, positive root of equation, H(s) = 0
r, outer radius of tube a  thermal diffusivity of fluid
r, inner radius of tube B wall conductance parameter
r  radial coordinate ® dimensionless parameter, f/Pe?
r* dimensionless radial coordinate, r/r; 6  function in solution
R, coefficient in solution u  dimensionless parameter, ®/B
s Laplace transform variable A, eigenvalues of solution
T, effective external temperature p  density of fluid.
Equation (1) can be written in terms of an effective  where

external fluid temperature T (x), in the form

h 2-r} d*T,
a6 = (’r—> M-+ ( dx;’) (1%

i

where

T = 20

+T,

0

The boundary conditions for the wall are

dT,
—2 =0, for

x<0 and x> L.
dx

In the absence of a generation source Q, the effective
temperature is equal to the external fluid temperature
T,. The energy equation for the fluid is written for
hydrodynamically fully developed laminar flow in the
absence of fluid axial conduction. For a round pipe this

takes the form
0T ko] oT
A et )

puCe ox ror [r ar] @

u(r) = 2u,, [1 - (1>2].
T

The boundary condition at r = 0 is

oT
o 0,x)=0, x>0. (2a)
The boundary condition at x = O is
T(,0) = T.. (2b)

Equations (1*) and (2) are now expressed in
dimensionless form. For this purpose we use the terms
similar to those adopted by Faghri and Sparrow [6].

The energy equation for the wall takes the
nondimensional form

S CUA N &’y
q _(k>'_(to tw)B+(dzz>(D (3)

where the external Biot number, B = (h,r./k) and the
parameter @ is given by

B

@=L
Pe?



Laminar forced convection in circular and flat ducts

and

(rg_riz ) kw
P=" (7)

is the wall conductance parameter.

The Biot number is usually defined as (hr,/k,,) for
most conduction—convection situations. In the present
instance, however, the thermal resistance of the wall in
the radial direction is assumed to be small. The
nondimensional number, B, is more a measure of the
ratio of the internal fluid resistance to the external
convective resistance. This nondimensional number
has been used previously in the solution of the Graetz
problem with boundary conditions of the third kind [8,
9]. The wall conductance parameter, §, is a measure of
the ratio of the axial wall conductance to the
conductance of the fluid. The nondimensional number,
®, is directly proportionally to §, for a constant value of
the Péclet number.

The boundary conditions are:

dt,,

—¥ -0,

at z<0 and z>L"*
dz

Following the work of some of the previous
investigators on related conjugate problems, the
nondimensional axialcoordinate could be taken as, x*
= x/r, instead of the more common nondimensional
coordinate, z = x/(r;Pe). This would make the
comparison of results with other work easy. However,
the presentation of results is considerably compressed
by using the parameter z. Hence we develop the analysis
using the parameter z as the axial distance variable.

The nondimensional form of the set of equations [2],
with constant wall temperature boundary condition
T(r;, x) = T, has been solved, and the solution is given
by Kays [7] in the nondimensional form

0

O(r*,z) = Y C,R(r*)exp(—4Zz).

n=0

2%

The eigenvalues A, and the coefficients G, for this
system are tabulated in ref. [7].

The foregoing expression (2*) is now used to obtain
the solution for the set of equations (2) and (3), using the
Duhamel superposition technique. This gives the
equation

d’t,,
—B(t,—t,)—® (Tzz ) =—q"

=J t(l,n) (@—)(1, z—n)dyp+6(1,0)0-t(1,2) (4)
° dz
where ¢,(z) = t(1, 2).

In order to solve the integro-differential equation (4),
the axial distance variable z is Laplace transformed and
the convolution theorem is applied to the first term on
the RHS. The wall end boundary conditions are applied
to second term on LHS in its transformation.

This leads to the equation

— B[7,—1,]+®st,(0)— ®s?T,, = (1, 0)F, +5,0 (5)
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where

© 2G,A2
= Z 2
n=o(s+42)

is the Laplace transform of (d0'/dz) and

6'(1,0)=—2 Y G, from ref. [7].
n=0

On substitution equation (5) simplifies to the form

Ew _ [?o—ﬂStw(O)] (6)
1—psh)+ z i G
(1=p B) &0 (s +3)

where u = ®/B.

In principle, equation (6) can be used to determine the
wall temperature distribution and all the other heat
transfer parameters, for any form of the given
equivalent external temperature distribution ¢.(z). The
computational problem reduces to one of determining
the zeros of the expression

PR Lol N
His) = (1 =ps )+<B)n;o(s+l,2,) @
and then obtaining the inverse transform of (6).

An accurate iterative method was used to obtain the
zeros of H(s) in the present work. This will be described
later in the paper. In general, H(s) = 0, has only one
positive root and all the other roots are negative. If the
roots of H(s) =0 are denoted by «;, then the wall
temperature distribution is obtained by inverting
expression (6), and for a uniform external temperature
distribution t,, this has the form

tw(z) = to+ i Ctl:
i=1

tO
%;

—ut,(0) ai] e (8

where the coefficient C; is given by

2 2 G2 -1
Ci= [B S H “"] ‘ ©)
In the temperature distribution given by (8), the wall
temperature at z = 0, ¢,,(0) is as yet unknown. This is to
be determined using the wall end boundary conditions.
Here two situations can be distinguished.

For the first case of a very long duct, the contribution
from the positive root o, must be zero for otherwise the
term e"** — o0 as z — .

Therefore, from (8) we obtain the condition

ut (0) = t—‘;, for a ‘long’ duct.

aP
For the second case, consider a duct of nondimensional
length L*. The heat flow along the duct wallatz = L™
is zero from the boundary condition assumed.
Therefore,

dr,,

=0.
dz|,=p+
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Using equation (8) we have,

t, i C;exp (o;LY)
uto(0) = —a.%—’—,
Z Co? exp (a,L™)

for a ‘short’ duct.

The wall temperature distribution is completely known
now and it can be used to obtain closed form
expressions for all the other important heat transfer
parameters like the bulk mean fluid temperature
distribution, the wall heat flux distribution and the
local Nusselt number variation. These are summarised
in the following section.

Bulk mean fluid temperature
Applying the energy equation to a control volume
from x = 0 to x we obtain the following

2nroJ q(x") dx’ +mC, T, = mC, Ty,
0

T X
+n(r2 —rd)k, (i—w> +2arh, f (T,—T)dx'. (10)
dx °

Substitution of the nondimensional variables gives the
bulk mean fluid temperature as

by _ , de,,
i3 j [t,—t.] dz +u(dz )

Local heat flux and Nusselt number
Applying the energy equation to a wall element at x
we have

(11)

d7;
2nr,q = mC ng (12
This gives the nondimensional form for the wall heat
flux
. qn 1 /dtg,
== 13
T =1k (dz) (13)
The local Nusselt number is given by
h2r,  2r, q
Ny=-——1_21 . 14
TR T [Tw— 7;,,] 1

N. E. WUEYSUNDERA

The nondimensional form is
2%t
(tw—1p)
Direct substitution of the expressions given by
equations (8) and (9) for the wall temperature, in the

equations (11), (13) and (15) gives the various heat
transfer parameters.

Nu = (15)

Computational method

The computational problem associated with the
present analytical method reduces essentially to one of
finding theroots of the equation, H(s) = 0, where H(s)is
given by equation (7). The form of the functions
involved in H(s), lends itself to an iterative solution
which is both fast and accurate. Also there is no
difficulty in obtaining the very large roots. Figure 2
shows a sketch of the various functionsinvolved in H(s).
It is seen that (us®—1) is parabolic with zero values at
+1/,/p and a turning point at (0, — 1). The functional
form (2s/B)Y 9 G,/(s+ 42), has branches lying between
a series of asymptotes at the various ‘4, values. For
large positive values of s, the curve reaches the value
(2/B)Y ¢ G,. The intersection of the two functions
corresponds to the roots of H(s) = 0. It is clear that
there is one positive rootinrange, 1/,/p < o, < 00. The
negative roots lie between the various 4, values and the
larger roots get progressively closer to the correspond-
ing A, values. With a reasonable initial value for each
root, an iterative procedure converges rapidly on the
exact root. This can be achieved with any desired degree
of accuracy. In the present computation over 50 roots
were used to obtain consistent converged results for the
Nusselt number.

The predictions of the present method in the absence
of wall conduction, i.e. with g = 0, were compared with
12 eigenvalues and coefficients given recently by Ozisik
and Sadeghipour [9], over a range of Biot numbers
from 0.10 to 100, for a round tube. The agreement was
very good with the maximum deviation less than
0.02%. Next the present results were compared with
those of Faghri and Sparrow [8], for local Nusselt
number variation in the absence of wall axial con-
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duction. Over the range of z, from 0.0004 to 1.0, and
at Biot numbers of 0.8, 2.1 and 11.2, the differences
between the results if any are too small to be resolved
using the graphs A’, B’ and E’ in Fig. 1 of ref. [8]. The
heat transfer results for the solution of the conjugate
problem using the foregoing analysis, are presented
in the next section.

RESULTS AND DISCUSSION

It is seen that in view of the many parameters
involved in the analysis, a completely general data
presentation is difficult. Each heat transfer parameter
like the bulk mean fluid temperature and the local
Nusselt number depends on three independent
dimensionless parameters z, B and ®, for the case of a
‘long’ duct and the nondimensional length L™* becomes
anadditional parameter for the case of ashort duct. The
Péclet number, Pe, does not occur as an independent
parameter. We take advantage of this fact to compress
the presentation of results. Since the Péclet number
occurs in @ and z, it can be treated as a scaling factor in
the various curves.

The eigenvalues «; and coefficients C; for the round
tube and the flat duct are given in Tables 1 and 2, at
different values of the conductance parameter ® and the
Biot number B. The sign is consistent with the equation
for the wall temperature distribution. The main heat
transfer results are discussed in the following section
considering first the case of a ‘long’ duct.

The variation of the tube wall temperature with axial
distance is shown in Figs. 3 and 4. It is seen that the wall
temperatureis influenced both by the wall conductance
parameter @ and the Biot number B. When B is small,
i.e. when the external thermal resistance is larger, the
wall temperature distribution depends strongly on ®.
The distribution gets progressively ‘flatter’ as @ is
increased. This is to be expected due to the increased
conduction heat flow downstream along the tube wall.
For low values of @, the increase in wall temperature is

more gradual due to the reduced ‘fin’ effect. When B is
increased to a large value, i.e. when the external thermal
resistance is very low, the influence of the variation of @
on the wall temperature distribution is much less and
the distribution is much flatter as seen from Fig. 4.
Figure 3 shows that for B = 1.0, the temperature
distributions intersect at distance beyond about z =
0.3. The wall temperature for larger @ values now fall
below that for smaller ®@. This is due to the balance
which occurs between heat flow along pipe wall, the
heat flow by external convection and the heat flow into
the fluid. The magnitude of these quantities at any
section is determined by the changes which occur along
the downstream section.

A similar crossing occurs for the bulk mean fluid
temperature distributions as evident from Figs. 5 and 6.
However, the effect of the conduction parameter @, on
the bulk mean temperature is less pronounced. At
shorter distances, the ‘fin effect’ resulting from the heat
flow along the tube wall helps to increase the fluid
temperature more rapidly. However, as the wall
temperature falls below the corresponding value for the
low @ value, the bulk fluid temperature follows this
decrease some distance upstream of wall temperature
crossing point. The effect of the Biot number B on the
bulk mean fluid temperature is significant as seen in Fig.
5. At smaller values of B, the rise is very slow due to the
poorer heat gain by external convection.

The effect of the wall conductance on the inner
convection heat flux is evident from Fig, 7 where heat
flux ratio is plotted against axial distance. In the near
region of the tube, the heat flux isincreased by a factor of
two to three for low Biot number of about 1.0 to 0.10.
However, at larger Biot number, the high external
convection reduces the enhancement of the heat flux
resulting from the ‘fin’ effect along the tube wall. Thus
the wall conduction effects are more important in
situations where the external thermal resistances is the
controlling factor.

The effect of the wall conductance parameter on the
local Nusselt number is less pronounced as seen in Fig.
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8. An increase in the conduction parameter ® reduces
the local Nusselt number to different values along the
tube. This again is due to the balance between, the heat
flux, the wall temperature and the bulk mean fluid
temperature, as these together determine the magni-
tude of the local Nusselt number.

The effect of the nondimensional duct length on the
wall temperature and the bulk mean fluid temperature
areshown in Figs. 9 and 10. When the length L* ismore
than about 0.2, the wall temperature follows closely the
distribution for a long’ duct. For shorter duct lengths,
the wall temperature is significantly below that for the
long duct. This is due to reduced heat flow from
upstream due to the smaller length of the “fin’ available.
The difference between the curves increases progress-

ively as the duct length is reduced. When the
conduction parameter is reduced to a small value
(® =0.5%x10"%, the difference between the wall
temperature distribution for the long duct and a duct of
length L* = 1.0 x 10~ 2is very small and this difference
is mainly near the end of the short duct. Similar trends
of behaviour is observed at different Biot numbers, the
effects of axial conduction being more pronounced at
lower values of B.

The effect of the duct length on the bulk mean fluid
temperature is less marked as seen in Fig. 10. The
distribution for the shorter ducts follows the variation
for the long duct closely.

The heat transfer results for the flat, rectangular duct
follow the same trends as the circular tube. The
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FiG. 11. Axial variation of local Nusselt number.



Laminar forced convection in circular and flat ducts

variation of local Nusselt number for this geometry is
shown in Fig. 11, and the eigenvalues and coefficients
for the problem are given in Table 2.

CONCLUSION

An analytical method based on the Laplace
transform technique was obtained for the solution of
conjugate heat transfer problem with axial wall
conduction, external convection and internal laminar
flow in round and flat ducts. The method is
computationally simple and gives accurate results for
the eigenvalues. It can be easily adopted for other flow
situations.

The heat transfer parameters depend on four
nondimensional groups B, ®, z and L*. For small
values of the Biot number, B, the wall temperature
distribution and the bulk mean fluid temperature
distribution, depend strongly on the conductance
parameter, ®. The heat flux enhancement due to wall
conduction is large at short distances from the duct
inlet. The wall temperatureis strongly dependent on the
total duct length but the bulk mean fluid temperature is
less dependent on the length. The variation of Nusselt
number with ® and B is significant.
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CONVECTION LAMINAIRE FORCEE DANS DES CONDUITS CIRCULAIRES ET PLATS
AVEC UNE CONDUCTION AXIALE EN PAROI ET UNE CONVECTION EXTERNE

Résumé—Une solution analytique est obtenue pour la convection forcée laminaire dans des conduits

circulaires et plats en présence de conduction axiale de paroi et de convection externe sur la surface externe de

la paroi du conduit. Les valeurs propres du probléme sont déterminées a partir d’'une solution pour la

condition aux limites de température uniforme. Le transfert thermique dépend de quatre nombres

adimensionnels. Les températures de paroi et du fluide dépendent fortement du paramétre de conductance

surfacique tandis que I'accroissement du flux de chaleur du a la conduction de la paroi est important a des
distances courtes de I’entrée du conduit.

KONVEKTION BEI ERZWUNGENER LAMINARER STROMUNG IN KREISFORMIGEN
UND IN FLACHEN KANALEN MIT LANGSWARMELEITUNG IN DER WAND UND
KONVEKTION AUF DER AUSSENSEITE

Zusammenfassung—Es wurde eine analytische Losung fiir die Konvektion bei erzwungener laminarer
Strémung in kreisférmigen und in flachen Kanélen bei Lingswirmeleitung in der Wand und Konvektion
an der AuBenseite der Wand hergeleitet. Die Eigenwerte des Problems wurden unter Verwendung der
Lésung fur die Randbedingung konstanter Temperatur bestimmt. Die Ergebnisse fiir den Warmedurchgang
héngen von vier dimensionslosen Kennzahlen ab. Die Wand- und die Fluidtemperaturen hingen stark
vom Wirmeleitfdhigkeits-Parameter ab, wihrend die Erhéhung der Wirmestromdichte infolge Langs-
Wairmeleitung in der Wand bei geringen Abstinden vom Kanaleintritt groB ist.

JAMHUHAPHAS BbIHYXAEHHAS KOHBEKIIMSA B KPYIJIbIX H ITJIOCKUX KAHAJIAX
C OCEBO¥ TEILIOIMPOBOAHOCTBIO CTEHOK M BHEIMIHEN KOHBEKLIUENA
Ansorauus—Ilony4yeHO aHATMTHYECKOE pelleHHe [UIA JIAMMHAPHOH BLIHYXACHHOH KOHBEKIMH B
KpYIJIBIX M IJIOCKHX KaHajax MpH OCeBOH TENNONMPOBOOHOCTH CTEHKH KaHAJIa ¥ BHEIUHEH KOHBEKIHH HA
ee HapyXHOH nopepxuocTd. CoGcTBeHHbIC 3HAUEHMA 3ada4H HalIcHbl C MOMOWIBIO DELICHHA IS rpa-
HUYHBIX YCJIOBHH C NOCTOSHHOM TemmnepaTypoi. Tensnoo6mMeH onpenenseTca YeToipbMs OGe3pa3sMEPHBIMH
wnciaMu. TeMnepaTypsl CTEHKH H XHIKOCTH CHJILHO 3aBHCAT OT TEIUIONIPOBOAHOCTH CTEHKH, B TO BpeMs
KAK yBEJIMYEHHE TCIUIOBOTO MOTOKA H3-3a TEIUIONPOBOJHOCTH CTCHKH 3aMETHO JIMIIL HA HeBOobIMX
pacCTOSHHUAX OT BXOJa B KaHaJl.



